

Update from the Silicon Task Force

G. Bolla

Purdue University

For the CDF Silicon Task Force

Outline

- Goals, manpower and time scale
- Description of the failures:
 - **→** Distributions
 - **→** Symptoms
- 4 lines of investigation started
 - → 1 not yet started
 - → 1 ruled out
 - → 1 in progress (almost ruled out)
 - → 1 Still going <u>VERY STRONG EVIDENCES THAT WE ARE IN THE RIGHT TRACK</u>
- How are we fighting back
- What should come next
- Conclusions

The Silicon Task Force

- Built on 09/30/2002 to cope with
 - DVDD Jumpers failure
 - **→** DOIM Failures
 - → 12 KHz L1A Limit
 - → With Luminosity > 3E31 we are limiting the capabilities of CDF to acquire Physics data
- The GOALS are:
 - Understand the role of L1A trigger rate on the failure mechanisms
 - → Do we need the Limit or Not?
 - → Our specifications are 50 KHz so what is going on?
 - → Remove/mitigate the source/s of the failures
 - Understanding them is a tool to achieve the goals
- The time scale:
 - → By the end of October we should be done (Today is 10/31/2002)
 - → We will keep working on it but 2 months is reasonable to finish the job
- Who is involved:
 - → The CDF Silicon Group
 - → ESE department
 - Old SVXers
 - → + More (T.D. etc...)

www- cdf.f nal.gov/ upgrades/ silicon/ TASK- Force/ main.ht ml

List of failures

Ladder	Date	Type	Run	L1A rate	"Torture"
SB4W9L4	03/18/2002	Jumper	<u>141190</u>	3.4 KHz	NO
SB0W2L2	03/24/2002	Jumper	<u>141571</u>	3.5 KHz	NO
SB5W5L0	05/08/2002	Jumper	144562	16 KHz	YES
SB3W8L0	05/08/2002	Jumper	144562	16 KHz	YES
SB5W4L2	06/16/2002	DOIM	146652	17 KHz	YES
IB1W1L4	06/27/2002	DOIM	147267	16 KHz	YES
SB4W10L4	06/27/2002	Jumper	147267	16 KHz	YES
SB0W3L3	09/03/2002	Jumper	150948	5-7 KHz	YES
SB5W7L0	09/03/2002	Jumper	150948	5-7 KHz	YES
SB0W7L4	09/03/2002	Jumper	150948	5-7 KHz	YES
SB5W3L1	09/03/2002	Jumper	<u>150948</u>	5-7 KHz	YES
SB2W9L0	09/15/2002	Jumper	<u>151557</u>	3-4 KHz	NO
SB0W4L4	09/27/2002	Jumper	<u>152125</u>	3-4 KHz	NO
SB1W3L4	10/5/2002	Jumper	<u>152515</u>	7-8 KHz	NO

Time Evolution

Jumpers: Phi vs Z map

		Bulkhead					
		0	1	2	3	4	5
W	1						
E	2	L2					
D	3	L3	L4				L1
G	4	L0					
E	5						L0
	6						
	7	L4					L0
	8				LO		
	9			LO		L4	
	10					L4	
	11						

Symptoms: DOIM FAI LURE

- Consistent with loosing connection on a power line
 - → 5VDOIM current decrease by 300mA (150mA)
 - → 2VDOIM current decrease by 150mA
- There are NO MORE useful data coming out of the ladder (Both PHI and Z)

Symptoms: Jumper FAI LURE

- Consistent with loosing connection on the DVDD power line
 - - → Understood now with the help of Tom Zimmerman
 - → Decrease of DVDD current (almost negligible)
- NO MORE useful data coming out of Z side of the ladder (the PHI side is still fully functioning)

7f008214 00010100

70067100 72027304 74077500 76007704 78047903 7a007b00 7c077d00 7e007f04 a1140000 a0140001

What is being done:

4 Lines of investigation

- Breaking the power connections due to excess current:
 - → Not possible without tripping the Power Supply
 - → At this time considered closed www-cdf.fnal.gov/internal/silicon/TASK-Force/Line1.PDF
- Aging of the power connections
 - Test still running (4 days at 90 deg C with 500 mA with 48 connections under test without any failure yet after ~2-3 years equivalent of CDF time)
 - Thanks to Azizur, Joel and Maurice At this time considered almost closed www-cdf.fnal.gov/internal/silicon/TASK-Force/line2/line2.html
- → Aging of the power connection induced by Lorentz forces
 - → Jumpers and DOIMs have power connection wire-bonds that are orthogonal to the magnetic field (even AVDD2 bonds are oriented this way)
 - → 2 tests being done
 - Detailed investigation of movements vs frequency, current swings and bond shapes
 - → At the Technical division
 - Statistic test (multi-bonds) on pull strength and failure statistic
 - → Here in CDF with the 2T TOF magnet
 - → We are breaking bonds in a systematic way and we are learning more in a daily basis www-cdf.fnal.gov/internal/silicon/TASK-Force/line3/line3,html
- **→** Bad grounding scheme responsible for power surges
 - → Not much done yet. (One e-mail from M. Lindgren)

The setup at the T.D.

Capabilities of the optics

Resonant frequencies

SEM pictures taken at the T.D

Resonant frequencies

The force driving the resonance

The DVDD current vs time during a L1A cycle

Layer 1 ladder with RDriver=7. X and Y axes are Phi and Z occupancy in percent

The BE of the SVX3d chips have a time dependent power consumption on the DVDD power line

- → The force changes with time
- The force is strongly dependent on:
 - **→** The R-driver settings
 - the occupancy
- To minimize the current and the current swing there is potentially a price to pay on the data quality
 - reliability of the data transmission line
 - Efficiency and resolution?

Layer 1 ladder with RDriver=1. X and Y axes are Phi and Z occupancy in percent

Current - Pulse Amplitude (Rdriver)

Current Pulse Width (Occupancy)

Changes already done on the CDF Silicon Detector

- Changed the Rdriver settings for the SVX3d chips.
 - Explored 7 to 4 and changes have been applied accordingly
 - Data from 4 to 1 has been taken last night and are being analized

GUI	Real	Run	No	Bad	Perf.
Set	Set	Num	R/O	R/O	R/O
7	7	153034	42	77	1085
3	6	153039	44	78	1082
5	5	153037	48	83	1073
1	4	153044	51	80	1073

- Raised the Thresholds for SVXII from 7 to 9 ADC
 - This will lower the Noise occupancy
 - **→** Shorter pulses
 - Not impact on physics (to be verified)

- There are 3 parameters that play a role:
 - Current Amplitude: We are dealing with it
 - **→** Current Pulse Width: We are dealing with it
 - FREQUENCIES: Understand if there are windows of frequencies that should be avoided
- Characterize multiple wire-bonds with the same shape as in the detector
 - Understand if there are windows of frequencies that should be avoided
 - → If this is the case we will have deal with trigger and DAQ issues
- I want to have a "BRAIN STORM" meeting sometime next week
 - → More/different expertise is needed:
 - Trigger expert
 - **→ DAQ Expert**
 - **→** Whoever is interested and willing to do work!
 - Please be ready to provide your brain power and some work.

Conclusions

A group of people is working hard on this topic

- There is a growing list of things to do
 - We believe the man-power is enough but
 - → We do not want to lose anybody
 - We will ask for more
- So far successful on:
 - Ruling out the power surge mechanisms
 - → Ruling out (almost) the "aging" of the Jumper's VIAs
 - ➡ Building a strong connection between failures and Lorentz forces
- Fair amount of work being done to minimize the impact on CDF
 - → Minimizing DVDD current and current swing (Rdriver and Thresholds)
 - Automatic HRR called by Silicon Online monitoring tools
 - Impact of Sparse vs neighbors readout being investigated
- Moving to the frequency domain is a new challenge and we will need more resources for 2-3 months
- Do NOT run tests with the Silicon in CDF without the Permission of the Silicon Expert.
 - Need for GROUND rules to be written up.
- Think about it next time (Run2b)
 - Strongly consider replacing CPC (DOIM) for ISL
 - Buy now PARTs that could get obsolete (ELCO Connectors)
 - Review your design considering the lesson being learn
 - → Is encapsulation enough? (Very likely so! Sigh!)